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High quality 0.02 mol%, 0.05 mol%, and 0.08 mol% Fe: β -Ga2O3 single crystals were grown by the floating zone
method. The crystal structure, optical, electrical, and thermal properties were measured and discussed. Fe: β -Ga2O3
single crystals showed transmittance of higher than 80% in the near infrared region. With the increase of the Fe doping
concentration, the optical bandgaps reduced and room temperature resistivity increased. The resistivity of 0.08 mol% Fe:
β -Ga2O3 crystal reached to 3.63× 1011 Ω·cm. The high resistivity Fe: β -Ga2O3 single crystals could be applied as the
substrate for the high-power field effect transistors (FETs).
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1. Introduction
The β -gallium oxide (β -Ga2O3) crystal has become an

increasingly attractive semiconductor for the potential appli-
cations in the fields of high-power devices, solar blind ultra-
violet photodetectors, and Schottky x-ray detectors[1–3] due
to its outstanding material properties. Unintentionally-doped
β -Ga2O3 has a bandgap of 4.5–4.9 eV[4–6] with a theoreti-
cal breakdown electric field of 8 MV/cm, which is two times
larger than those of SiC and GaN.[7,8] Baliga’s figure of merit
(BFOM) is 3214 which is only lower than that of diamond.
Gallium oxide commonly has five polymorphs named as α , β ,
γ , δ , and ε . Among them, β -Ga2O3 is the most stable crystal
structure.[9] High crystalline quality β -Ga2O3 bulk crystal can
be grown by the melt-growth techniques such as Czochralski
(CZ), edge-defined film-fed growth (EFG), and floating zone
(FZ) method.[10–12] With the development of β -Ga2O3 de-
vices, the high resistance β -Ga2O3 substrate is needed to fabri-
cate high-power field effect transistors to ensure lower leakage
current.[13–15] However, unintentionally-doped β -Ga2O3 usu-
ally exhibits n-type due to the residual impurities in raw ma-
terials such as Si, Sn, and Ge.[16] The electron concentration
and resistivity of unintentionally-doped β -Ga2O3 are typically
about 1017 cm−3 and 10−1 Ω·cm, respectively.[17–20] Doping
deep acceptors is needed to compensate the free carriers to
achieve semi-insulating (SI) β -Ga2O3.

Currently, β -Ga2O3 can be made SI by doping Fe.[21–23]

The Fe ion acts as deep acceptors in β -Ga2O3 and pins the

Fermi level away from the conduction band (CB). By thermo-
luminescence (TL) spectroscopy, an additional defect center
with an activation energy of 0.62 eV was introduced in Fe: β -
Ga2O3 with the resistivity of 5.10×106 Ω·cm.[24] An acceptor
energy of 0.86 eV was tested by the high temperature Hall
effect measurement in the conduction band with Fe doping
concentration of 8× 1017 cm−3.[25] Based on first principles
study, the bandgap of β -Ga2O3 reduced to 3.30 eV by dop-
ing Fe.[26] These results show that the defect energy may have
relationship with the Fe doping concentration and influence
the physical characterization of high resistivity Fe: β -Ga2O3

crystal.
In this paper, high resistivity Fe: β -Ga2O3 single crystals

were grown by the FZ technique. The optical, electrical, and
thermal properties of the as-grown crystals have been studied,
which would provide basic performance parameters for the de-
vice fabrications.

2. Experimental methods
The 0.02 mol%, 0.05 mol%, and 0.08 mol% Fe: β -Ga2O3

single crystals were grown by the FZ method. Feed rods
were prepared with gallium oxide powder (purity 99.9999%)
and Fe2O3 powder (purity 99.99%). The rods were shaped
by a cold press of 50 MPa for 20 min and then sintered at
1500 ◦C for 24 h in the air atmosphere. Crystal growth was
carried out by advanced four halogen lamp floating zone fur-
nace (Quantum De-sign-IRF01-001-00). The crystal growth
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rate was 5 mm/h with a rotation speed of 8 rpm in the air flow
atmosphere along the [010] direction.

To analyze the single crystal structure and quality, the
x-ray powder diffraction and x-ray diffraction rocking curve
were tested by a Bruker D8 ADVANCE diffractometer. The
optical transmission spectra were measured by an UV–VIS–
NIR spectrophotometer (Varian Cary 5000). The room tem-
perature current–voltage (I–V ) curves and the temperature de-
pendence resistivity were obtained by a Keithley 4200 semi-
conductor characterization system and an Agilent 6517B meg-
ger. The specific heat and thermal diffusivity were tested by
a DSC 8000 differential scanning calorimeter and a LFA467
Hyper Flash conductometer. The samples were cut along the
(100) plane and double-sided polished by chemical mechani-
cal polishing.

3. Results and discussion
3.1. Structure characterizations

The as-grown Fe: β -Ga2O3 crystals are brown, trans-
parent without cracks, as shown in Fig. 1. The diameter of
0.02 mol% Fe: β -Ga2O3 crystal is about 6 mm, the length is
about 20 mm, and the analysis of GDMS shows that the actual
doping concentration of Fe ion is 17 µg/g. The colors of the
crystals become deeper with the increase of Fe doping concen-
tration. Figure 2 shows the x-ray diffraction (XRD) patterns
of the as-grown crystals. All the diffraction peaks could be
indexed in monoclinic phase β -Ga2O3 (PDF #41-1103), indi-
cating that the dopant did not change the crystal structure. The
unit cell parameters of 0.02 mol% Fe: β -Ga2O3 were calcu-
lated as a = 12.1974 Å, b = 3.0355 Å, c = 5.7861 Å and β =

103.88◦, and the unit cell parameters of unintentionally-doped
β -Ga2O3 were calculated as a = 12.1797 Å, b = 3.0319 Å,
c = 5.7852 Å and β = 103.38◦. The ionic radius of Fe2+/3+

is bigger than that of Ga3+, and thus the unit cell parameters
increase after doping Fe. The crystalline quality was evalu-
ated by high-resolution x-ray diffraction. The x-ray diffraction
rocking curve of 0.02 mol% Fe: β -Ga2O3 wafer is shown in
Fig. 3. The rocking curve is symmetrical with the full-width at
half-maximum of 118.5 arcsec, indicating that the crystal has
a good crystal quality without sub-grain boundaries.

Fig. 1. The 0.02 mol% Fe: β -Ga2O3 single crystal.
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Fig. 2. The XRD patterns of β -Ga2O3 and Fe: β -Ga2O3 crystals.
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Fig. 3. XRD rocking curve of 0.02 mol% Fe: β -Ga2O3 wafer.

3.2. Optical properties of Fe: β -Ga2O3

Figure 4(a) shows the optical transmission spectra of
0.02 mol%, 0.05 mol%, and 0.08 mol% Fe: β -Ga2O3 wafers
with the thickness of 2 mm. Fe: β -Ga2O3 single crystals
showed transmittance of higher than 80% in the near infrared
region while the transmittance of unintentionally-doped β -
Ga2O3 fell rapidly with the increase of wavelength. Low trans-
mittance in the near infrared region could be ascribed to the
plasma reflection of conduction electrons.[16] It can be seen
that Fe: β -Ga2O3 crystals have high resistivity. The absorp-
tion edge of unintentionally-doped β -Ga2O3 was determined
to be 264 nm. The absorption edges of 0.02 mol%, 0.05 mol%,
and 0.08 mol% Fe: β -Ga2O3 increased to 288 nm, 309 nm,
and 327 nm, respectively.

The optical bandgap energy can be obtained by plotting
(αhν)2 against hν , where α is the absorption coefficient and
hν is the photon energy.[24,27] As shown in Fig. 4(b), the opti-
cal bandgaps reduced with the increase of the Fe doping con-
centration. In the cases of pure, 0.02 mol%, 0.05 mol%, and
0.08 mol% Fe: β -Ga2O3, the optical bandgaps were 4.695 eV,
4.338 eV, 4.044 eV, and 3.760 eV, respectively. First princi-
ples study on the electrical properties of Fe: β -Ga2O3 found
a significant decrease in the optical bandgap from 4.80 eV to
3.30 eV,[26] which is consistent with our results. The bandgap
narrowing occurs in the Cr-doped SI GaAs samples due to the
screening of the electron–hole interaction caused by the pres-
ence of both Cr2+ and Cr3+ states of chromium.[28] For Fe-
doped SI InP samples, the Fe dopant gives rise to the bandgap
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narrowing.[29] The relationship between the concentration of
the Fe dopant and the optical bandgap of Fe: β -Ga2O3 is
shown in Table 1. The concentration of the Fe dopant is in-

versely proportional to the optical bandgap. It may be that the
defect energy caused by doping Fe[23–25] broadens with the
increase of the Fe doping concentration.
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Fig. 4. Room-temperature optical transmission spectra (a) and absorption edges (b) of 0.02 mol%, 0.05 mol%, and 0.08 mol% Fe-doped
β -Ga2O3 crystals.

Table 1. Influences of the Fe dopant on the optical bandgap and resistivity.

Doping concentration/mol% Pure 0.02 0.05 0.08
Optical bandgap/eV 4.695 4.338 4.044 3.760

Resistivity/Ω·cm 2.40×10−1 1.89×108 8.47×1010 3.63×1011

3.3. Electrical properties of Fe: β -Ga2O3

The root mean square roughness (RMS) of the polished
samples is about 0.5 nm in the area of 7 µm×7 µm tested by
atomic force microscopy. The samples were cleaned by ace-
tone and Ti/Au (20 nm/50 nm) electrodes were deposited by
electron-beam evaporation with an area of 4 mm×4 mm. In
order to obtain Ohmic contact between Ti and Fe: β -Ga2O3,
a rapid thermal annealing at 850 ◦C for 30 s in the nitrogen at-
mosphere was performed. Figure 5 shows the current–voltage
(I–V ) curves of Fe: β -Ga2O3, which exhibited a good Ohmic
contact behavior. From Table 1, it can be seen that the re-
sistivity increased and the increasing trend slowed down with
the increase of the Fe doping concentration and there was a
negative correlation between the resistivity and the optical
bandgap. The resistivity of unintentionally-doped β -Ga2O3

was measured to be 2.40×10−1 Ω·cm at room temperature,
while the resistivity of 0.02 mol%, 0.05 mol%, and 0.08 mol%
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Fig. 5. The I–V curves of 0.02 mol%, 0.05 mol%, and 0.08 mol% Fe:
β -Ga2O3 crystals.

Fe: β -Ga2O3 reached to 1.89×108 Ω·cm, 8.47×1010 Ω·cm,
and 3.63×1011 Ω·cm, respectively. Temperature-dependent
resistivity of 0.08 mol% Fe: β -Ga2O3 was tested from
100 ◦C to 550 ◦C. As shown in Fig. 6, the resistivity was
8.92×107 Ω·cm at 100 ◦C, and decreased rapidly to 59 Ω·cm
when the temperature raised up to 550 ◦C. It might be that the
Fe ion acts as acceptors in Fe: β -Ga2O3 single crystals and
the captured electrons would be released with the increase of
temperature.[30]
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Fig. 6. Temperature-dependent resistivity of 0.08 mol% Fe: β -Ga2O3
crystal from 100 ◦C to 550 ◦C.

3.4. Thermal conductivity of Fe: β -Ga2O3

The thermal conductivity of the substrate plays an impor-
tant role in the β -Ga2O3 power devices. 0.02 mol% Fe: β -
Ga2O3 crystal was cut into 4 mm×3 mm×1 mm to test the
specific heat. Figure 7 exhibits that the specific heat improved
with the increase of temperature. The specific heat increased
from 0.475 J/g·K at 300 K to 0.598 J/g·K at 475 K. Figure 8
presents the thermal diffusivity of 0.02 mol% Fe: β -Ga2O3
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along the [100] direction. The thermal diffusivity decreased
with the increase of temperature, which was 4.761 mm2/s at
300 K and 2.381 mm2/s at 475 K. The density of Fe: β -
Ga2O3 was 5.651 g/cm3 at room temperature measured by the
drainage method. The thermal conductivity was calculated to
be 12.780 W/m·K at room temperature, a little smaller than
the reported result of 16 W/m·K calculated for β -Ga2O3 by
the first law at 300 K,[31] but larger than 10.9± 1 W/m·K of
the Sn: β -Ga2O3 at room temperature.[32] It was reported that
the phonon-point-defect scattering would reduce the thermal
conductivity.[33] The reason behind the discrepancies in the
reported values of thermal conductivity could be due to the
increase of phonon-point-defect scattering by doping Fe ion.
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Fig. 7. Temperature-dependent specific heat of 0.02 mol% Fe: β -
Ga2O3 crystal.
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Fig. 8. Temperature-dependent thermal diffusivity of 0.02 mol% Fe:
β -Ga2O3 crystal along the [100] direction.

4. Conclusion
Fe: β -Ga2O3 crystals with different doping concentra-

tions were grown by the FZ method. With the increase of the
Fe doping concentration to 0.08 mol%, the optical bandgap
reduces to 3.760 eV. For the unintentionally-doped β -Ga2O3

crystal, the optical bandgap is 4.695 eV. Fe: β -Ga2O3 crys-
tals have high resistivity at room temperature. The room
temperature resistivity of 0.08 mol% Fe: β -Ga2O3 crystal
is 3.63×1011 Ω·cm, and the resistivity reduces rapidly to
59 Ω· cm when the temperature raises up to 550 ◦C. The ther-
mal conductivity of the 0.02 mol% Fe: β -Ga2O3 crystal is
12.780 W/m·K at room temperature, slightly lower than the
reported result of β -Ga2O3 crystal. Fe: β -Ga2O3 crystal is a
good candidate for high-power devices.
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G, Mihaila A, Badstübner U and Vines L 2018 Appl. Phys. Lett. 112
042104

[24] Islam M M, Rana D, Hernandez A, Haseman M and Selim F A 2019 J.
Appl. Phys. 125 055701

[25] Neal A T, Mou S, Rafique S, Rafique S, Zhao H, Ahmadi E, Speck J
S, Stevens K T, Blevins J D, Thomson D B, Moser N and Chabak K D
2018 Appl. Phys. Lett. 113 062101

[26] He H, Li W, Xing H Z and Liang E J 2012 Adv. Mater. Res. 535 36
[27] Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A,

Fiorentini V, Fornari and R 2016 J. Phys.: Condens. Matter 28 224005
[28] Hrivnák L 1987 J. Appl. Phys. 62 3228
[29] Fornari R and Kumar J 1990 Appl. Phys. Lett. 56 638
[30] Lenyk C A, Gustafson T D, Halliburton L E and Giles N C 2019 J.

Appl. Phys. 126 245701
[31] Santia M D, Tandon N and Albrecht J D 2015 Appl. Phys. Lett. 107

041907
[32] Guo Z, Verma A, Wu X, Sun F, Hickman A, Masui T, Kuramata A,

Higashiwaki M, Jena D and Luo T 2015 Appl. Phys. Lett. 106 111909
[33] Slomski M, Blumenschein N, Paskov P P, Muth J F and Paskova T 2017

J. Appl. Phys. 121 235104

087201-4

https://doi.org/10.1088/0268-1242/31/3/034001
https://doi.org/10.1088/0268-1242/31/3/034001
https://doi.org/10.1364/OE.23.028300
https://doi.org/10.1364/OE.23.028300
https://doi.org/10.1063/1.5020178
https://doi.org/10.1063/1.5020178
https://doi.org/10.1103/PhysRev.140.A316
https://doi.org/10.1103/PhysRevB.74.195123
https://doi.org/10.1063/1.4821858
https://doi.org/10.1063/1.4821858
https://doi.org/10.1063/1.5002138
https://doi.org/10.1063/1.5002138
https://doi.org/10.1021/ja01123a039
https://doi.org/10.1002/crat.201000341
https://doi.org/10.1002/crat.201000341
https://doi.org/10.1016/j.jcrysgro.2004.06.027
https://doi.org/10.1016/j.jcrysgro.2004.06.027
https://doi.org/10.7567/JJAP.55.1202A2
https://doi.org/10.1063/1.4941429
https://doi.org/10.1063/1.4941429
https://doi.org/10.1109/LED.2016.2568139
https://doi.org/10.1109/LED.2016.2568139
https://doi.org/10.1109/LED.2015.2512279
https://doi.org/10.1039/C9CE01294J
https://doi.org/10.1063/1.4816759
https://doi.org/10.1063/1.3642962
https://doi.org/10.1063/1.3642962
https://doi.org/10.1016/j.jcrysgro.2014.07.021
https://doi.org/10.1002/pssc.200674884
https://doi.org/10.1063/1.4906375
https://doi.org/10.1063/1.5051986
https://doi.org/10.1063/1.5020134
https://doi.org/10.1063/1.5020134
https://doi.org/10.1063/1.5066424
https://doi.org/10.1063/1.5066424
https://doi.org/10.1063/1.5034474
https://doi.org/10.1088/0953-8984/28/22/224005
https://doi.org/10.1063/1.339325
https://doi.org/10.1063/1.102722
https://doi.org/10.1063/1.5133051
https://doi.org/10.1063/1.5133051
https://doi.org/10.1063/1.4927742
https://doi.org/10.1063/1.4927742
https://doi.org/10.1063/1.4916078
https://doi.org/10.1063/1.4986478
https://doi.org/10.1063/1.4986478

	1. Introduction
	2. Experimental methods
	3. Results and discussion
	3.1. Structure characterizations
	3.2. Optical properties of Fe: -Ga2O3
	3.3. Electrical properties of Fe: -Ga2O3
	3.4. Thermal conductivity of Fe: -Ga2O3

	4. Conclusion
	References

